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AI in small-molecule drug discovery: Black box or crystal ball? 

 

1. Intro 

Artificial intelligence (AI) and machine learning (ML) have become household buzzwords across 

virtually every domain of science and technology. Beyond the academic sphere, the advent of open-

source AI tools such as ChatGPT and Bard has quickly spread the notion that there is little AI cannot 

do. Indeed, AI applications have now become commonplace in many aspects of day-to-day life, from 

web search engines to image and speech recognition software.  

In the field of drug discovery, AI has also received a lot of attention from biotech and big pharma 

companies, with several AI-designed drug candidates making it through to the clinic in recent years 

(Table 1). Morgan Stanley predicted in 2022 that AI-enabled improvements in early-stage drug 

development could represent a potential $50 billion boost to the market over the next decade[1]. Third-

party investment in AI-enabled drug discovery reached $5.2 billion at the end of 2021, already more 

than double the $2.4 billion figure attained in 2020[2]. CPHI’s Annual Report 2023 for the first time 

reveals that pharmaceutical ‘AI companies’ have overtaken ‘late stage’ as the industry’s most appealing 

investment option for venture capital (VCs)[3]. Clearly, the AI/ML drug discovery field is entering a boom 

period in terms of funding. But is it all plain sailing from now on, or do there remain substantial 

questions over the successful implementation of AI in drug discovery?  

1.1.  The need for AI in drug discovery 

Bringing a drug to the market is becoming an ever more costly endeavour for pharma companies. In 

2022, it was estimated that the average cost of R&D for the top 12 biopharma companies was $2.284 

billion per drug – double the $1.188 billion calculated in 2010[4,5]. Around one-third of that figure is 

spent on the drug discovery phase, a phase that can last 5-6 years before a candidate is taken forward 

to clinical trials[5]. Over the same period, forecast peak sales per late-stage asset in the pipeline have 

more than halved from $816 billion to $389 million[4,5]. The subsequent expected return on investment 

has therefore decreased from 10.1% in 2010 to 1.2% in 2022[4,5]. 

With a typical development timeline of over 10 years and a clinical failure rate of 90%, which has not 

changed much over the years, there is clearly a need to streamline the drug discovery process and 

improve the probability of success in reaching and achieving drug approvals. Consequently, 

computational approaches aimed at avoiding time-consuming experiments at the early stage of drug 

discovery could considerably enhance the process, provided the quality of the outcome is maintained, 

or ideally, improved. 

1.2.  Computational approaches in drug discovery are not new 

The use of computational methods in drug discovery is not a recent development. In 1981, Fortune 

magazine hailed computer-aided drug design (CADD) as the next industrial revolution[6]. CADD refers 

mostly to structure- and ligand-based approaches in pre-clinical drug discovery, including molecular 

docking, virtual screening, and quantitative structure-activity relationship (QSAR) among others. While 

CADD has experienced its fair share of hype and disillusionment, it has now become a mainstay to help 

identify suitable lead molecules for most preclinical programs. This is predominantly thanks to an ever-

increasing repertoire of 3D protein structures, a rapid expansion of drug-like chemical space, and the 

advances in cloud and graphics processing unit (GPU) computing resources[7]. 
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Machine learning (ML) is not new to the field either. In 1994, QSAR modelling was established as a 

method to predict phenotypic effects such as toxicity by deriving equations from focused subsets of 

compounds[8]. This led to more in-depth research aimed at capturing properties such as 

pharmacophores and three-dimensional structure. The structural revolution in combination with an 

increasing amount of data from high-throughput screening further paved the way for more complex 

ML models in the 21st century.  

The terms AI, ML and deep learning (DL) are often used interchangeably but it's worth defining them 

individually. AI is an umbrella term that refers to the use of technologies to build machines and 

computers that have the ability to mimic cognitive functions associated with human intelligence, such 

as analysing data and making recommendations in the context of drug discovery. ML, on the other 

hand, refers to a subset of AI that automatically enables a machine or system to learn and improve 

from experience in a process known as training, where algorithms are exposed to training data as part 

of the development process[9]. DL can be thought of as a further subset of ML that uses more complex 

artificial neural networks to process data through various layers of algorithms and find accurate 

solutions without human intervention (Figure 1). 

 

Figure 1: Distinguishing the terms artificial intelligence (AI), machine learning (ML) and deep 

learning (DL). 

It wasn’t until 2013 that complex DL methods finally demonstrated real benefit over other ML 

approaches. That year, a SAR challenge set by Merck was won by a team that used a deep neural net 

to make better prospective predictions than random forests (an ML algorithm) on a set of large diverse 

QSAR data sets[10]. The rapid growth and public availability of “big data” stored in chemical databases 
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such as PubChem and ChEMBL further supported model training and validation, allowing for more 

accurate AI medicinal chemistry tools[11].  

Suffice to say that over the past decade, developments in AI-facilitated drug discovery have sky 

rocketed, and an increasing amount of attention has turned towards computational approaches in 

industry. The rapid progress of AI is in part due to the immense computational power now at our 

disposal. Research by OpenAI showed that between 2012 and 2018, the amount of ‘computing power’ 

used in the largest AI training runs increased exponentially with a 3.4-month doubling, a growth that 

corresponded to a 300,000-fold improvement[12]. Now, nearly every stage of the drug discovery 

pipeline has now been targeted with a relevant AI tool, and the fruits of this labour are now starting 

to be seen, with over 100 submissions across drug and biological product applications mentioning 

AI/ML in 2021[13]. Here we consider the various applications of AI/ML in drug discovery and assess 

potential limitations as well as future directions in the field. 

2. Promising contributions of AI to drug discovery 

 

2.1.  Target identification 

Target identification is a crucial and often time-consuming step in drug discovery that strongly 

influences the probability of success at every step of drug development. It involves the identification 

of the right biological molecules or cellular pathways that can be modulated by drugs to achieve 

therapeutic benefits. The combination of multi-omics (e.g. genomics, epigenomics, proteomics) with 

experimental and computational approaches forms the basis of target identification. However, the 

overwhelming amounts of biomedical data amassed from diverse sources such as fundamental 

research on disease mechanisms and patient-derived data have made data analysis an immensely 

complex task. This is particularly the case in complex diseases where the underlying disease 

mechanisms are poorly understood[14].  

One recent example is amyotrophic lateral sclerosis (ALS), a severe neurodegenerative disease with 

poorly defined pathogenesis. In 2022, Pun et al. applied an AI-based target discovery platform 

PandaOmics to analyse the expression profiles of central nervous system (CNS) samples and direct 

induced pluripotent stem cell (iPSC)-derived motor neurons, resulting in the discovery of 28 AI-

proposed targets for ALS treatment. These targets were subsequently validated in an ALS-mimicking 

Drosophila model, in which the suppression of eight unreported targets strongly attenuated eye 

neurodegeneration[15].  

Besides the complex multi-omic data crunching approach, AI image recognition algorithms have also 

been implemented at the target identification level. Yang et al. incorporated an image-based deep 

learning method to identify cardioprotective small molecules in a phenotypic screen using human 

iPSC-cardiomyocytes (iPSC-CMs)[16]. In this case, the neural networks were trained using approximately 

1,300 immunocytochemistry images from both BAG3-depleted and control iPSC-CMs, resulting in a 

model that could successfully separate both classes of cells with 95% accuracy. Fifteen HDAC inhibitors 

were identified from a screen of 5,500 bioactive compounds that significantly protected the iPSC-CMs 

from sarcomere damage. HDAC6 in particular was validated as a suitable target for dilated 

cardiomyopathy (DCM) after reducing sarcomere damage in mouse models, and awaits further 

preclinical work[17].  

2.2.  Protein structure prediction 

Once a protein target has been identified, considerable efforts are typically made to obtain a three-

dimensional structure of the protein, ideally in a biologically relevant orientation, if it is not already 
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available. These efforts are often run in parallel to primary screening experiments so that any 

promising hits can be validated structurally. If the medicinal chemist knows how and where a hit binds 

to the protein target, then the process of hit-to-lead optimisation can be facilitated through the 

rational, structurally-enabled design of novel molecules that bind optimally to the target site[18]. The 

problem is that in many cases, obtaining 3D structures of protein-ligand complexes is not 

straightforward and often involves techniques such as X-ray crystallography and cryo-electron 

microscopy (cryo-EM). These techniques have their limitations (as discussed elsewhere[19,20]), meaning 

that several drug discovery projects involving proteins that do not readily crystallise, or are too small 

for cryo-EM, are left ‘blinded’ by a lack of structural data to support chemists during the rational design 

process. 

Over the past 40 years, the number of structures solved experimentally and deposited in the Protein 

Data Bank (PDB) has grown exponentially, with over 200,000 structures now present, covering the 

whole spectrum of protein classes[21]. Fuelled by this growth in the PDB, computational efforts aimed 

at solving the ‘protein folding problem’ have accelerated in recent years. Despite much progress being 

made using both computational physics and bioinformatics approaches, it wasn’t until 2020 that the 

first computational method was reported that could predict protein structures to near experimental 

accuracy. This much-acclaimed breakthrough came at the 14th Critical Assessment of protein Structure 

Prediction (CASP14) when Google Deepmind presented their neural network-based model, 

AlphaFold2[22]. By training the algorithm on the hundreds of thousands of protein structures and 

sequences in the PDB, AlphaFold2 could accurately predict structures from the amino acid sequence 

with a median backbone accuracy of 0.96 Å root mean square deviation (RMSD), compared to the next 

best performing method which had a backbone accuracy of 2.4 Å RMSD[22].  

One week after the breakthrough publication in July 2021, DeepMind announced that it had used 

AlphaFold to predict the structure of nearly every human protein, in addition to proteins present in 

other well-studied organisms, comprising 365,000 structures in total[23]. One year later, the structures 

of around 200 million proteins had been predicted by AlphaFold, with the European Molecular Biology 

Laboratory’s European Bioinformatics Institute (EMBL-EBI) deeming that 35% of those predicted 

structures were as good as experimentally determined structures[24]. Such unprecedented speed and 

accuracy earned AlphaFold2 widespread acclaim and led many to believe that it would transform drug 

discovery, allowing researchers to bypass the time-consuming and arduous task of experimentally 

determining the structure of protein-ligand complexes.  

However, the step-up from apo-protein structure prediction to protein-ligand complex structure 

prediction is not as simple as it seems. Karelina et al. reported in May 2023 that the accuracy of ligand 

binding poses predicted by computational docking to AlphaFold2 protein structures was much lower 

than when docking to experimentally determined apo-protein structures[25]. The reasons for this are 

still unclear but may be due to small differences in the orientation of side chains between the 

experimental and predicted structures. Nevertheless, Recursion recently announced that it had used 

its AI tool MatchMaker to calculate the protein targets of 36 billion drug-like compounds in the 

Enamine Real Space library, screened against 15,000 human protein structures predicted by 

AlphaFold[26]. MatchMaker is a neural network trained on drug-binding pockets from over 8000 PDB 

and SwissModel co-complex structures to discriminate bioactive drug-target pairs from randomised 

pairs[27]. While this method was shown by Recursion to facilitate the discovery of a novel DCAF1 ligand, 

it did not predict the binding poses of the screened ligands, a different challenge altogether that has 

also been tackled by various computational approaches over the years. 

2.3. Virtual screening 
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The recent expansion of chemical libraries containing billions of molecules that can be synthesised on 

demand, such as Enamine Real Space, Mcule ultimate, and WuXi GalaXi, has strongly encouraged the 

growth of ultra-high throughput virtual screening methods[28]. In a conventional high-throughput 

screen, libraries of 50,000 – 500,000 compounds are screened against a given target, often leading to 

only a handful of ‘hits’ after secondary validation. However, these hits often exhibit relatively poor and 

non-selective target binding affinity and can have suboptimal ADMET and PK properties. It then takes 

several years of hit-to-lead optimisation to reach a lead molecule with suitable properties for clinical 

progression.  

Meanwhile, conventional virtual screening efforts have been limited to screening fewer than 10 million 

compounds before in vitro validation, offering only a marginal scale advantage over the top HTS 

screens. Simply scaling up the current in silico screens is not a viable solution either – it has been 

calculated that it would take more than 3,000 years to screen 1010 compounds on a single CPU core  
[7]. Similarly, simply screening larger libraries represents a real danger of amplifying false positives – 

even with a 0.000001% false positive hit rate, the total number of false positive hits from a screen of 

10 billion compounds would be 10,000.  

One example of a deep learning solution to ultra-scale virtual screening is the dockAI platform 

currently being developed by Iktos. This platform harnesses a branch of ML methodology called active 

learning, where an increasingly accurate model can be trained to act as a stand-in for a difficult or 

computationally costly scoring function. As a proof of concept, the docking algorithm was trained 

against a subset of published results from an established docking method. After iterative scoring and 

retraining of the ML algorithm to correctly predict docking scores, the top 5% of compounds predicted 

with the ML model were then docked to evaluate the accuracy of the model. More than 80% of the 

experimentally confirmed hits were successfully recovered by the ML method with a 14-fold 

improvement in computing cost[28]. In March 2023, Iktos announced the closure of a €15.5m Series A 

financing, while also maintaining collaborations with several big pharma companies. 

Similarly, recent work at MIT’s Jameel Clinic has led to the development of DiffDock, a diffusion 

generative AI model (DGM) that can carry out molecular docking with fast inference times and high 

selective accuracy. Instead of taking a classical “sampling and scoring” approach, where ligand poses 

are searched that best fit the protein pocket, DiffDock takes a “blind docking” DGM approach. This 

involves first training the model on a variety of protein-ligand poses, where a gradual noising process 

helps grow a neural network that can then recover, or denoise, the protein-ligand poses[29]. Faced with 

protein and ligand structures outside of the training set, DiffDock is then able to denoise randomly 

sampled ligand poses via a reverse diffusion over translational, rotational, and torsional degrees of 

freedom. These sampled poses are then ranked by the confidence model to produce a final prediction 

and confidence score[30]. On the PDBBind blind docking benchmark test, DiffDock achieved a 38% top-

1 prediction with RMSD < 2 Å, considerably surpassing the previous best search-based (23%) and deep 

learning methods (20%).  

AI-accelerated protein-ligand docking is still a relatively recent addition to the field, with various 

publications reporting the development of alternative AI docking methodologies over the past two 

years[7,31,32]. It remains to be seen to what extent these DL-based methods will become commonplace 

in the field of drug discovery. It is likely that the ability to accurately dock ligands onto computationally 

generated protein structures will be one of the next objectives in the field. Besides DiffDock, existing 

state-of-the-art molecular docking tools fall short, and perform only a little better than chance[33,34]. 

2.4.  Physicochemical and ADMET properties 
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The physicochemical properties of a drug candidate can have a huge influence on the likelihood of 

clinical progression. Understanding the pharmacokinetic and pharmacodynamic (PK/PD) profile of a 

drug is crucial in the clinic, but the properties governing the PK/PD profile can often be difficult to 

predict and optimise. QSAR modelling in particular aims to find a mathematical relationship between 

molecular properties of a compound and its biological activity. QSAR algorithms are typically trained 

on data obtained for a given target and a chemical scaffold with the goal of guiding the optimisation 

of affinity and potency. Unsurprisingly then, the quality of the QSAR model is highly contingent on the 

quality and availability of the data obtained for a given target class.  

ML approaches have been used for over 20 years to facilitate QSAR modelling. Methods based on 

linear regression, Bayesian neural networks and random forests (RF) have been reported, with RF being 

the most commonly used algorithm[34]. Neural networks were used for QSAR in the 1990s, however, 

due to the high prediction accuracy, ease of use and robustness of RF, neural networks quickly lost 

their place to RF as the gold-standard method[35]. The watershed moment for deep neural networks 

came in 2012 when a Merck-sponsored Kaggle competition focusing on QSAR problems was won by a 

team utilising a deep neural net (DNN). The crucial difference between the neural networks used in 

the 1990s and the DNNs used ubiquitously across current AI applications is that the DNNs have more 

than one intermediate or ‘hidden’ layer and more neurons in each layer, resulting in both deeper and 

wider networks (Figure 2)[7]. In the past, neural networks were limited to a small number of input 

descriptors and were prone to overfitting, modern DNNs with multiple hidden layers and thousands 

of neurons in each layer can now face datasets with hundreds of thousands of compounds and 

thousands of descriptors.  

 

 

Figure 2: Schematic overview of the differences between traditional machine learning methods 

and deep learning methods. 

However, SARs are notoriously complex, giving rise to the SAR paradox or activity cliffs – the 

observation that some molecules with highly similar structures can exhibit large differences in potency. 

In a 2022 publication, van Tilborg et al. highlighted the noticeably poor performance of deep learning 
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approaches to correctly anticipate cliff compounds, demonstrating the need to include structure-

activity disconnects during model training and selection[36]. Similarly, DL-based QSAR algorithms failed 

to outperform simpler kernel regression models in a QSAR binding prediction challenge focusing on 

the kinase superfamily[37]. Given the broad availability of data for protein classes and superfamilies 

such as kinases and aminergic GPCRs, the quality of simpler QSAR algorithms can often be more than 

sufficient. It remains to be seen how well DL QSAR algorithms perform for other smaller protein 

families. 

 

 

2.5.  De novo drug design 

One step beyond in silico screening and QSAR modelling is the ability to design de novo drug candidates 

with desired efficacy, safety, and PK/PD profiles. Compared to virtual screening, AI-assisted de novo 

design can generate a wider variety of structures without the need to recourse to pre-existing 

compound libraries. In 2019, at least nine AI tech providers were starting to offer tailored de novo drug 

design services[4]. However, de novo drug design is understandably much more complex than just 

virtual screening, and as of September 2023, only one entirely AI-designed drug, by Insilico Medicine, 

has successfully entered Phase 2 trials[38].  

Insilico Medicine is pioneering the end-to-end use of AI in drug design, with its candidate small 

molecule INS018_055 entering Phase 2 clinical trials in China for the treatment of idiopathic 

pulmonary fibrosis (IPF). The approach taken involved target identification through multi-omics and 

deep biology analysis, followed by automated, ML de novo drug design using its Chemistry42 platform. 

This platform comprises 40+ generative models that function in parallel to generate novel structures 

upon addition of user data. The generated molecules are filtered before being subjected to multiple 

sets of reward and scoring modules that assess the molecular properties according to the predefined 

criteria. These modules form the core of the backbone of the multiagent reinforcement learning (RL)-

based generation protocol[39]. 

Besides Insilico, companies such as Exscientia and BenevolentAI have also pioneered the use of 

generative AI in end-to-end drug discovery. Exscientia describes itself as a ‘full stack AI drug discovery 

company’ and has implemented AI tools across the discovery pipeline, from target identification to 

precision medicine in clinical trials. In September 2023, Merck KGaA and Exscientia signed a 

collaborative deal worth up to $674 million to harness the AI-driven precision drug design and 

discovery capabilities of Exscientia. Another collaboration with Bristol Myers Squibb worth up to $1.2 

billion has also resulted in the progression of a PKC-theta small molecule inhibitor, EXS4318, to Phase 

1 trials in February 2023[40]. In this case, generative AI was used to rapidly explore selectivity-focused 

scaffolds and design a nominated candidate in under 11 months.  

2.6.  Drug repurposing 

AI/ML has not only gained traction in medicinal chemistry and drug design but also in drug 

repurposing, a concept that involves expansion of an approved or investigational (including clinically 

terminated) drug into a new therapeutic area. The ever-growing wealth of data surrounding drug 

candidates across a range of indications lends itself to computational approaches aimed at finding the 

ideal drug for a given disease. For example, the Chemiverse platform developed by Pharos iBio 

combines big data and AI technology to repurpose existing therapies, such as the small molecule Phi-
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101 that was originally developed as an acute myelogenous leukaemia (AML) therapy and is now in 

Phase 1 trials for the treatment of ovarian cancer.  

The COVID-19 pandemic served as an ideal opportunity to demonstrate the speed and efficiency of AI 

approaches in identifying effective COVID-19 therapeutics through repurposing. One such example 

was the deep learning approach taken by Zeng et al. to rapidly identify 41 drug candidates for the 

potential treatment of COVID-19[41]. In this approach, a knowledge-graph-based deep-learning 

methodology was built that integrated scientific literature and drug properties from 24 million PubMed 

publications and the DrugBank. Of the 41 repurposable drugs identified, nine were, or had been, in 

clinical trials for COVID-19 at the time of publication, including corticosteroids such as dexamethasone 

that was shown to reduce mortality in cases of severe COVID-19 infection[42]. A similar knowledge 

graph approach was taken by BenevolentAI to identify baricitinib, at the time a rheumatoid arthritis 

therapy, as a candidate for treating patients with COVID-19[43]. Olumiant (baricitinib) was subsequently 

approved by the FDA for the treatment of COVID-19 in May 2022.  

Several companies are now actively engaged in leveraging the abundant omics data of human disease 

to reposition drugs in new therapeutic areas. AstraZeneca has been developing computational 

approaches to repurpose drugs since 2015, and in 2020 identified complementary gene expression 

profiles induced by idiopathic pulmonary fibrosis (IPF) and saracatinib, a candidate drug originally 

developed to potentially treat cancer[44]. The Phase 1b/2a clinical trial of saracatinib to treat IPF is 

currently ongoing and is expected to reach completion at the end of 2023[45].  

Other smaller companies such as Auransa and Healx have also developed in-house knowledge graphs 

to automate disease biology data mining and identify novel disease-compound relationships, often 

incorporating FDA-approved drugs already on the market. While the pipelines of both companies are 

still focusing on developing novel drug candidates, the ability to quickly find FDA-approved candidates 

for drug repurposing could prove crucial in emergency situations like a pandemic, where time-

consuming preclinical animal safety experiments can be circumvented. 

Table 1: Current clinical pipelines of ‘AI-first’ companies developing small molecules, adapted from 

a table published by the Wellcome Trust/BCG in June 2023[46].  

Company Molecule Name Global Status Therapeutic Area 

BioXcel Therapeutics dexmedetomidine Launched Mental health 

Nimbus Therapeutics NDI-034858 Phase 3 Oncology 

Neumora Therapeutics NMRA-140 Phase 3 Mental health 

Recursion Pharmaceuticals REC-2282 Phase 2/3 Oncology 

A2A Pharmaceuticals AO-001 Phase 2 Oncology 

OrphAI Therapeutics apilimod dimesylate Phase 2 Covid-19 

OrphAI Therapeutics AIT-101 Phase 2 Neurology 

BPGbio ubidecarenone Phase 2 Oncology 

HemoShear Therapeutics HST-5040 Phase 2 Metabolic 

Landos Biopharma NX-13 Phase 2 Inflammatory disease 

Nimbus Therapeutics firsocostat Phase 2 Oncology 

InSilico Medicine INS018-055 Phase 2 Respiratory 

Nobias Therapeutics fasoracetam Phase 2 Neurology 
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3. Limitations 

The past five years has been described as an ‘AI Spring’ given the rapid growth of generative AI 

platforms across all STEM domains. In the domain of drug discovery, AI tools have shown their 

capabilities in streamlining often time-consuming and costly stages of the discovery pipeline, such as 

target identification and lead optimisation. Indeed, BCG estimated in 2022 that AI-driven R&D efforts 

at both the discovery and preclinical stages could translate to time and cost savings of at least 25-

50%[46].  

However, what remains unclear is the extent to which generative AI methodologies enhance clinical 

translation and progression. This is a crucial consideration, given the huge costs associated with clinical 

trials. With a number of AI-generated drugs now entering clinical trials, the next few years will prove 

to be a litmus test for the efficacy of AI tools in drug discovery (Table 1). Modelling shows that it will 

be improvements in the probability of clinical success that will deliver a significant step change in the 

economics of R&D[46]. This point was echoed by Bender and Cortes-Ciriano who found that the 

decrease in the number of failures, notably clinical failures, is more critical than simply failing more 

quickly or more cheaply in terms of cost per successful, approved drug (Figure 3)[47].  

Recursion Pharmaceuticals REC-4881 Phase 2 Oncology 

Recursion Pharmaceuticals REC-994 Phase 2 Neurology 

SOM Biotech tolcapone Phase 2 Neurology 

SOM Biotech bevantolol Phase 2 Neurology 

Nimbus Therapeutics NDI-101150 Phase 1/2 Oncology 

Accutar Biotechnology AC-682 Phase 1 Oncology 

Accutar Biotechnology AC-0176 Phase 1 Oncology 

Accutar Biotechnology AC-699 Phase 1 Oncology 

AI Therapeutics sirolimus Phase 1 Immunology 

BioAge Labs BGE-105 Phase 1 Musculoskeletal 

Black Diamond Therapeutics BDTX-1535 Phase 1 Oncology 

C4X Discovery INDV-2000 Phase 1 Mental health 

Exscientia EXS4318 Phase 1 Immunology 

Nimmune Biopharma LABP-104 Phase 1 Immunology 

Neumora Therapeutics NMRA-511 Phase 1 Neurology 

Pharos iBio PHI-101 Phase 1 Oncology 

Recursion Pharmaceuticals REC-3964 Phase 1 Infectious disease 

Relay Therapeutics RLY-2608 Phase 1 Oncology 

Relay Therapeutics RLY-4008 Phase 1 Oncology 

Schrodinger SGR-1505 Phase 1 Oncology 

SOM Biotech SOM-1311 Phase 1 Metabolic 

SOM Biotech prexasertib Phase 1 Covid-19 

Verge Genomics VRG-50635 Phase 1 Covid-19 



AI in small-molecule drug discovery: Black box or crystal ball? 

 
 

11 

Copyright © 2023 Alacrita Consulting Ltd. All rights reserved. 

 

www.alacrita.com 

 

Figure 3: The impact of speed, quality, and cost on the net profit of a drug discovery project, taken 

from Bender & Cortes-Ciriano, 2021[47].  

Incidentally, since the somewhat sceptical forecast put forward by Bender and Cortes-Ciriano in 2021, 

there has not been any noticeable surge in the progression of AI-generated drug candidates to the 

clinic. On the contrary, several AI-centric companies have faced more setbacks and disappointments 

than success. Exscientia announced in October 2023 that it would be streamlining its pipeline to focus 

on well-understood development challenges, winding down a Phase 1/2 study of its cancer drug 

candidate EXS-21546. Similarly, BenevolentAI was forced to lay off almost 50% of its staff and saw a 

79% fall in share price after the Phase 2 failure of its Trk inhibitor used for the treatment of eczema[48]. 

While it is still too early to tell what effect AI-driven drug discovery will have on clinical success, it is 

clear that drug discovery is not always as simple as generating highly potent ligands against a single 

target. As the CEO of Exscientia put it, “If we want to change the probability of success in the clinic, it’s 

not just better molecules; we also need better translational models.”[49] Not only do we need better 

translational models, but we also need a better understanding of when certain translational models 

are not necessary, especially from a regulatory perspective (discussed in depth in a previous Alacrita 

publication).  

Fundamentally then, it is essential to develop our human understanding of complex biology if we are 

to grow in our abilities to successfully model complex biological systems. Understanding how a drug 

interacts with a target is not simply a question of chemistry, which is well understood in terms of its 

underlying principles, but also of protein conformational changes, cellular signalling, gene expression, 

protein modifications, and various other aspects of systems biology that are still poorly understood. 

Adding the temporal and spatial dimensions to these aspects of biology only further complicates the 

picture. A consequence of this complexity is that it is much harder to define a finite set of parameters 

that explain how a drug acts in a cell or organism, making it incredibly challenging to provide 

meaningful quantitative variables and labels for successful AI implementation.  

The attempts that have been made to model the biological response of a drug have thus far relied on 

the modelling of proxy endpoints from assay data to predict an in vivo, clinical response. For example, 

the data obtained from assays such as high-throughput screens typically provide a quantitative score 

of on-target activity as a proxy for efficacy. While HTS proxy data can be somewhat predictive of in vivo 

efficacy endpoints, data obtained from animal models are more often than not poorly predictive of 

the human in vivo situation, both in terms of efficacy and safety[47]. Factoring in the generally poor 

reproducibility and variability of biological data (compared to chemical data), AI algorithms subjected 



AI in small-molecule drug discovery: Black box or crystal ball? 

 
 

12 

Copyright © 2023 Alacrita Consulting Ltd. All rights reserved. 

 

www.alacrita.com 

to biological datasets can therefore suffer from a “garbage in, garbage out” situation, where the 

problem lies not with the computational method itself but with the data it is trained on. In other words, 

even if a computational model is well trained on the data provided, and does manage to find an 

optimal candidate for the proxy endpoints provided, it may not yield a candidate with desired in vivo 

efficacy and safety. This reaches even further where some clinical endpoints are not adequately 

predictive of disease.  

Pharmaceutical research laboratories are faced with the trade-off of translation risk and execution risk, 

and in many instances, what can be done is prioritised over what needs to be done: instead of 

addressing the underlying cause of the disease, existing technologies are used to address a target that 

remains poorly understood in a human disease context[50]. That is why in recent years the focus has 

started to shift towards arguably more clinically relevant (although still inadequate) model systems, 

such as patient-derived xenograft models, disease-relevant human cell assay systems and artificial 

tissue or organoid test beds. If generative AI tools in drug discovery are to yield more drugs with 

improved clinical progression, it will be essential to incorporate human disease-relevant data into the 

pipeline. Only once the human biology of the target in disease is more clearly understood will the 

efforts aimed at developing a highly potent and selective pharmaceutical agent using AI lead to faster 

progression to the clinic, and hopefully, to the market.  

4. Future perspectives 

Over the past few decades, therapeutic hypotheses have not developed much beyond the idea that a 

cure to a disease is just a question of identifying a specific protein in a diseased system and finding a 

modulator of that protein based on studies in laboratory models. This reductionist approach has 

indeed resulted in the discovery of hundreds of curative drugs across a range of indications with well-

understood pathophysiology, but is not necessarily fruitful when tackling more complex diseases. 

Whilst games such as GO and chess have been impressively cracked by AI, drug discovery in complex 

disease has not yet seen the total revolution anticipated from the incorporation of generative AI into 

the pipeline (although this may just be a question of time). Drug discovery is much more complex than 

GO, which is a game dictated by a finite set of states and rules that are well defined; the former relies 

on the careful and contextualised interpretation of high-quality chemical and biological data[47]. For AI 

to make significant inroads across the discovery pipeline, it is crucial therefore to break from 

reductionist approaches that oversimplify human biology, however difficult that may be.    

In the coming years, AI implementations in drug discovery will no doubt benefit from the growing 

wealth of patient-derived data as well as more human-focused preclinical data. With more breadth 

and depth of data for specific therapeutic areas, use cases, and population sets, AI algorithms will have 

a stronger grasp of the underlying disease biology and be more predictive of patient outcomes. This of 

course relies on open access to these datasets, that can often be fragmented in the public domain or 

privately held. The standardisation and quality of the data will also need to be addressed, given the 

inconsistency in formatting and the levels of granularity across geographies and industries. 

Across the discovery pipeline, AI has already demonstrated its ability to dramatically improve 

productivity and broaden molecular diversity. What remains to be seen is whether AI-derived drugs 

can deliver on arguably the most important assessment criteria: improved standard of care and a 

higher probability of clinical success. Investors clearly have high expectations to see this in the coming 

years. The field is growing rapidly, with publications and patents related to AI-enabled drug discovery 

growing by 34% and 17% respectively year-on-year over the last five years[46]. However, more than 60% 

of all disclosed targets of AI companies in 2022 were kinases and other well-characterised classes such 

as GPCRs[51]. Therefore, as the technology develops, there will be more expectations to see AI tackle 
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more complex diseases with poorly understood biological mechanisms such as neurodegenerative 

disorders and autoimmune conditions. Until then, the field waits for its first approved AI-derived drug. 
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